16 research outputs found

    Security issues in PIM-SM link-local messages

    Get PDF
    Protocol Independent Multicast-Sparse Mode (PIM-SM) routing protocol attracts most of the attention of the Internet community due to its scalability and flexibility. From the very beginning, multicast communication faced various difficulties in its security areas. PIM-SM is also not free from this problem. Security features of a routing protocol consist of two orthogonal planes: data plane and control message plane. The first one ensures distribution of data packets securely while the other deals with security of control messages. Most of the PIM-SM control messages fall into the link-local category, and are sent to adjacent routers only, using TTL = 1 and ALL_PIM_ROUTERS as destination address. To protect these link-local messages, in the present Internet Draft of PIM-SM a security mechanism has been proposed that uses IPsec Authentication Header (AH) protocol. While using IPsec AH protocol, the anti-replay mechanism has been disabled. This compromise makes PIM-SM vulnerable to denial of service attack. Moreover, the Security Association lookup and number of Security Associations are also erroneous and incomplete in the document. A new proposal has been presented in this thesis to protect PIM link-local messages while activating the anti-replay mechanism as well. Security Association lookup method has been modified also to cope with this proposal. Finally, this new proposal has been validated using a validation tool, SPIN, that uses PROMELA to design the validation model

    DPCSpell: A Transformer-based Detector-Purificator-Corrector Framework for Spelling Error Correction of Bangla and Resource Scarce Indic Languages

    Full text link
    Spelling error correction is the task of identifying and rectifying misspelled words in texts. It is a potential and active research topic in Natural Language Processing because of numerous applications in human language understanding. The phonetically or visually similar yet semantically distinct characters make it an arduous task in any language. Earlier efforts on spelling error correction in Bangla and resource-scarce Indic languages focused on rule-based, statistical, and machine learning-based methods which we found rather inefficient. In particular, machine learning-based approaches, which exhibit superior performance to rule-based and statistical methods, are ineffective as they correct each character regardless of its appropriateness. In this work, we propose a novel detector-purificator-corrector framework based on denoising transformers by addressing previous issues. Moreover, we present a method for large-scale corpus creation from scratch which in turn resolves the resource limitation problem of any left-to-right scripted language. The empirical outcomes demonstrate the effectiveness of our approach that outperforms previous state-of-the-art methods by a significant margin for Bangla spelling error correction. The models and corpus are publicly available at https://tinyurl.com/DPCSpell.Comment: 23 pages, 4 figures, and 7 table

    Classification of Human Monkeypox Disease Using Deep Learning Models and Attention Mechanisms

    Full text link
    As the world is still trying to rebuild from the destruction caused by the widespread reach of the COVID-19 virus, and the recent alarming surge of human monkeypox disease outbreaks in numerous countries threatens to become a new global pandemic too. Human monkeypox disease syndromes are quite similar to chickenpox, and measles classic symptoms, with very intricate differences such as skin blisters, which come in diverse forms. Various deep-learning methods have shown promising performances in the image-based diagnosis of COVID-19, tumor cell, and skin disease classification tasks. In this paper, we try to integrate deep transfer-learning-based methods, along with a convolutional block attention module (CBAM), to focus on the relevant portion of the feature maps to conduct an image-based classification of human monkeypox disease. We implement five deep-learning models, VGG19, Xception, DenseNet121, EfficientNetB3, and MobileNetV2, along with integrated channel and spatial attention mechanisms, and perform a comparative analysis among them. An architecture consisting of Xception-CBAM-Dense layers performed better than the other models at classifying human monkeypox and other diseases with a validation accuracy of 83.89%.Comment: This paper is currently under review at ICCIT 202

    A review on deep-learning-based cyberbullying detection

    Get PDF
    Bullying is described as an undesirable behavior by others that harms an individual physically, mentally, or socially. Cyberbullying is a virtual form (e.g., textual or image) of bullying or harassment, also known as online bullying. Cyberbullying detection is a pressing need in today’s world, as the prevalence of cyberbullying is continually growing, resulting in mental health issues. Conventional machine learning models were previously used to identify cyberbullying. However, current research demonstrates that deep learning surpasses traditional machine learning algorithms in identifying cyberbullying for several reasons, including handling extensive data, efficiently classifying text and images, extracting features automatically through hidden layers, and many others. This paper reviews the existing surveys and identifies the gaps in those studies. We also present a deep-learning-based defense ecosystem for cyberbullying detection, including data representation techniques and different deep-learning-based models and frameworks. We have critically analyzed the existing DL-based cyberbullying detection techniques and identified their significant contributions and the future research directions they have presented. We have also summarized the datasets being used, including the DL architecture being used and the tasks that are accomplished for each dataset. Finally, several challenges faced by the existing researchers and the open issues to be addressed in the future have been presented

    Participant access control in IP multicasting

    Get PDF
    IP multicast is best-known for its bandwidth conservation and lower resource utilization. The classical multicast model makes it impossible to restrict access to authorized End Users (EU) or paying receivers and to forward data originated by an authorized sender(s) only. Without an effective participant (i.e., receivers and sender(s)) access control, an adversary may exploit the existing IP multicast model, where a host can join or send any multicast group without prior authentication and authorization. The Authentication, Authorization and Accounting (AAA) protocols are being used successfully, in unicast communication, to control access to network resources. AAA protocols can be used for multicast applications in a similar way. In this thesis, a novel architecture is presented for the use of AAA protocols to manage IP multicast group access control, which enforces authentication, authorization and accounting of group participants. The AAA framework has been deployed by implementing the Network Access Server (NAS) functionalities inside the Access Router (AR). The proposed architecture relates access control with e-commerce communications and policy enforcement. The Internet Group Management Protocol with Access Control (IGMP-AC), an extended version of the IGMPv3, has been developed for receiver access control. The IGMP-AC, which encapsulates Extensible Authentication Protocol (EAP) packets, has been modeled in PROMELA, and has also been verified using SPIN. Finally, the security properties of an EAP method, EAP Internet Key Exchange, have been validated using AVISPA. Protocol for Carrying Authentication for Network Access, a link-layer agnostic protocol that encapsulates EAP packets, has been deployed to authenticate a sender that establishes an IPsec Security Association between the sender and the AR to cryptographically authenticate each packet. Next, a policy framework has been designed for specifying and enforcing the access control policy for multicast group participants. The access control architecture has been extended to support inter-domain multicast groups by deploying Diameter agents that discover network entities located in remote domains and securely transport inter-domain AAA information. Furthermore, the inter-domain data distribution tree has been protected from several attacks generated by a compromised network entity (e.g., router, host) by deploying a Multicast Security Association. Finally, the scope of receiver access control architecture and IGMP-AC has been broadened by demonstrating the usability of IGMP-AC in wireless networks for mobile receiver (or EU) access control. In addition, using the EAP Re-authentication Protocol (ERP), a secured and fast handoff procedure of mobile EUs in wireless networks has been develope

    Security Property Validation of the Sensor Network Encryption Protocol (SNEP)

    No full text
    Since wireless sensor networks (WSNs) have been designed to be deployed in an unsecured, public environment, secured communication is really vital for their wide-spread use. Among all of the communication protocols developed for WSN, the Security Protocols for Sensor Networks (SPINS) is exceptional, as it has been designed with security as a goal. SPINS is composed of two building blocks: Secure Network Encryption Protocol (SNEP) and the “micro” version of the Timed Efficient Streaming Loss-tolerant Authentication (TESLA), named μTESLA. From the inception of SPINS, a number of efforts have been made to validate its security properties. In this paper, we have validated the security properties of SNEP by using an automated security protocol validation tool, named AVISPA. Using the protocol specification language, HLPSL, we model two combined scenarios—node to node key agreement and counter exchange protocols—followed by data transmission. Next, we validate the security properties of these combined protocols, using different AVISPA back-ends. AVISPA reports the models we have developed free from attacks. However, by analyzing the key distribution sub-protocol, we find one threat of a potential DoS attack that we have demonstrated by modeling in AVISPA. Finally, we propose a modification, and AVISPA reports this modified version free from the potential DoS attack

    Network Edge Intelligence for the Emerging Next-Generation Internet

    No full text
    The success of the Content Delivery Networks (CDN) in the recent years has demonstrated the increased benefits of the deployment of some form of “intelligence” within the network. Cloud computing, on the other hand, has shown the benefits of economies of scale and the use of a generic infrastructure to support a variety of services. Following that trend, we propose to move away from the smart terminal-dumb network dichotomy to a model where some degree of intelligence is put back into the network, specifically at the edge, with the support of Cloud technology. In this paper, we propose the deployment of an Edge Cloud, which integrates a variety of user-side and server-side services. On the user side, surrogate, an application running on top of the Cloud, supports a virtual client. The surrogate hides the underlying network infrastructure from the user, thus allowing for simpler, more easily managed terminals. Network side services supporting delivery of and exploiting content are also deployed on this infrastructure, giving the Internet Service Providers (ISP) many opportunities to become directly involved in content and service delivery
    corecore